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Abstract: In this paper, chaotic dynamics of a cubic-quintic-septic Duffing oscillator subjected to periodic excitation is 

investigated. The multiple scales method is used to determine the various resonance states of the model. It is found that the 

considered model posses thirteen resonance states whose seven are thoroughly studied. The steady-state solutions and theirs 

stabilities are determined. The frequency-amplitude curves show that the considered system presents mixed behavior, limit 

cycles, hysteresis, jump and bifurcation phenomena. It is also noticed that these phenomena are strongly influenced by 

quintic-septic nonlinearity and excitation amplitude. Bifurcation structures displayed by the model for each considered type of 

resonant states are investigated numerically using the fourth-order Runge-Kutta algorithm. As results, the quintic-septic 

nonlinearity, linear dissipation and excitation amplitude can be used to control the chaotic behavior of the system. 

Keywords: Extended Duffing Oscillator, Resonance States, Stability, Limit Cycles, Bifurcation and Jump Phenomena,  

Periodic and Quasi-periodic Oscillations, Chaos 

 

1. Introduction 

In recent decades, the studies on chaotic dynamics of 

nonlinear dissipative systems have received considerable 

attention of many investigators in order to understand the 

complex dynamical behavior of these systems. These studies 

are of great importance because chaos has large practical 

applications in sciences but also in engineering and in 

technology. For instance chaos has been used in physics for 

refining the understanding of planetary orbits and also for 

forecasting the intensity of solar activity [1]. In medicine, 

biology and physiology, the chaotic behavior has been used 

to detect and explain some physiological phenomena [2-4]. 

In meteorology, chaos can be used to indicate situations of 

better or worse predictability. In nanotechnology, the width 

of the conductance correlation function is determined by the 

average lifetime of transient chaos. Moreover in this 

discipline, chaos has been used to make the channels of a few 

hundred microns in cross-section [5]. In communication, 

chaos has been used to transmit information [6]. In 

engineering, chaotic dynamics was used for controlling the 

temperature of kerosene fan heaters and the direction of air 

flow of air conditioners to provide useful fluctuations that are 

expected to be comfortable to humans [7-8], etc. In view of 

the existence and importance of chaos in various branches of 

sciences and engineering, quantitative or qualitative analysis 

of chaotic systems is become a challenge for investigators. 

There are some numerical tools such as bifurcation diagram, 

phase portrait, Poincaré section map, Lyapunov exponent 

diagram and so on that are used to measure, detect, predict or 

quantify the chaotic behavior of dynamical systems. Many 

investigators in the study of chaotic dynamics have used 

Lyapunov exponent as a good indicator of chaos. According 

to this tool, a positive value of Lyapunov exponent is a 
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quantitative measure of chaos [9]. Frankly speaking, among 

the three fundamental forced oscillators such as Van der Pol, 

Rayleigh and Duffing oscillators, this latter with 
4ϕ potential 

having hardening or softening nonlinearity 

2" ' ( ) cos( )u u a bu u fµ τ+ + − = Ω         (1) 

where the prime (')represents a differentiation with respect to 

time, has been intensively used in context of various physical 

and engineering problems due to it rich variety of nonlinear 

dynamical behavior such as hysteresis, bifurcation, regular 

and chaotic behaviors and its potential applications [10-17]. 

Recently again it has been shown that Duffing oscillator with 
6ϕ  potential exhibits for appropriate parameter choices a 

wide rich variety of dynamical behavior that the dynamical 

system described by equation (1) cannot display [18-19]. 

Furthermore it has been also shown that the quintic term of 
6ϕ Duffing oscillator is responsible to produce the 

hardening-softening or softening- hardening behavior 

so-called mixed behavior. The authors of this paper have 

underlined that this behavior highly unstable, can be 

advantageous or disadvantageous according to the type of 

applications [20, 21, 22]. In the light of all the above, forced 

damped Duffing oscillator remains up to now a very 

important nonlinear model to examine in the study of chaotic 

dynamics in nonlinear dissipative systems. Therefore we 

consider in this work the following equation: 

( )2 41
1 1 cos

2 4
u u u u u F

αµ τ  ′′ ′+ + − + = Ω  
  

     (2) 

The particularity of this model is that it contains one 

parameter controlling the quintic and septic nonlinearities 

simultaneously. This model can arise in the modeling of a 

classical particle in a double-well potential [23]. It was also 

used to model the dynamic behavior of a cargo system [24]. It 

is interesting to point out that this model without damping has 

been obtained in the modeling of the purely elastic structures 

whose the tension was related to the normal strain by a power 

law [25]. The equation (2) is an extended form of cubic 

damped Duffing oscillator defined by (1). From this equation, 

when 0α = , the softening Duffing oscillator with 
4ϕ potential 

describes by equation (1) is obtained with 1a = and 
1

2
b = . 

As foregoing mentioned, various studies have been 

dedicated to the softening Duffing oscillator. The interest in 

this system lies in the variety of physical phenomena that it 

models, such as the rolling motion of a ship [26-27] and the 

fact that it is isomorphic with other systems of importance in 

physics and engineering [28]. The present study is motivated 

by the large variety of dynamical behavior of a softening 

Duffing oscillator [12] and also by the fact that the chaotic 

dynamics of a high-order Duffing oscillator have not been 

intensively studied up to now [18]. Therefore, in this work the 

following question is necessary to be asked in order to 

understand the chaotic behavior of dynamical system governed 

by (2): is that the parameter α controlling the quintic and septic 

nonlinearities simultaneously can affect the dynamics of 

softening Duffing oscillator equation? In order to answer to 

this equation, the authors of this paper suppose that α has 

significant effect on the dynamics of the softening Duffing 

oscillator with
4ϕ potential. To verify this assumption, we 

determine the various resonant states of (2) by means of the 

multiple scales method as well as the influence of the 

significant parameters on the each steady-state solution 

(Section 2). We afterward analyze its bifurcation and transition 

to chaos using numerical simulations (Section 3). Finally we 

present the conclusion of this work (Section 4). 

2. Resonance States 

In this section, we use the multiple scales method [29] for 

investigating the various resonance states of (2) as well as the 

effects of the significant parameters on the each steady-state 

response. To apply this method, we introduce into equation (2) 

the small perturbation parameter ε such as 0 1ε≤ < . Thus, 

equation (2) can be written as follows 

3 2 51 1
" 1 cos( )

2 4 2
u u u u u u F

αε µ τ  ′+ = − + − − + Ω  
  

  (3) 

where µ εµ=  and α εα= . Now, we seek an uniform 

first-order solution of equation (3)in the form: 

2
0 0 1 1 0 1( , ) ( , ) ( , ) 0( )u u T T u T Tτ ε ε ε= + +     (4) 

where oT τ= and 1T ετ= represent the fast and slow time 

scales respectively. In terms of the new time scales, the time 

derivatives become 

2
0 1 0( )

d
D D

d
ε ε

τ
= + + &

2
2 2

0 0 12
2 0( )

d
D D D

d
ε ε

τ
= + +  (5) 

Where , 0,1n
n

D n
T

∂= =
∂

represents differential operator. 

2.1. Primary Resonant State 

In this part, we put that F Fε= . The relationship between 

both natural and external frequencies is given by 1ω εσ= + , 

where σ  is the detuning parameter. Inserting equations (4) 

and (5) into (3) and equating the coefficients of like power of 

zero-order 0ε  and first-order 1ε on both sides, we obtain: 

0 2
0 0 0: 0D u uε + =                 (6) 

1 2 3
0 1 1 0 1 0 0 0 0

2 5
0 0

1
: 2

2

1
1 cos( )

4 2

D u u D D u D u u

u u F

ε µ

α τ

+ = − − +

 − − + Ω 
 

     (7) 

The solution of equation (6) can be expressed in the 

complex form: 

( ) ( ) ( )0 0
0 0 1 1 1,

iT iT
u T T A T e A T e

−= +          (8) 
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where A is the complex conjugate of A . Substituting the 

solution (8) into (7)yields to 

0

0

2 3 2 4 3
0 1 1 1

3 35
2 10

2 4 2

.
2

iT

i T

D u u iD A i A A A A A A A e

F
e NST c c

αµ

Ω

  + = − − + − −  
  

+ + +

 (9) 

where NST denotes the terms does not produce secular terms 

and .c c  designates the complex conjugate. Introducing the 

primary resonance condition given above into (9)and 

eliminating secular terms, we obtain the following equation: 

12 3 2 4 33 35
2 10 0

2 4 2 2

i TF
iA i A A A A A A A e

σαµ  ′− − + − − + = 
 

 (10) 

where the prime (’) denotes the derivatives with respect to 

1T . 

Writing A  in the following polar form: 

1( )
1

1
( )

2

i T
A a T e

θ=              (11) 

where 1( )a T and 1( )Tθ  are amplitude and phase response 

respectively. 

Inserting equation (11) into (10) and separating real and 

imaginary parts, we obtain the modulation equations: 

sin
2 2

F
a a

µϕ′ = −              (12) 

2 4 63 5 35
cos

16 4 16 256 2

F
a a a

a

αϕ σ ϕ ′ = + − − + 
 

       (13) 

where 1Tϕ σ θ= − , 

The steady-state response can be obtained by putting 

0a ϕ′ ′= =  in equations (12) and (13). Thus, the steady-state 

amplitude and phase are governing by the following equations: 

sin
2 2

F
a

µϕ =                 (14) 

2 4 63 5 35
cos

2 16 4 16 256

F
a a a

a

αϕ σ  = − − + − 
 

      (15) 

with 0a ≠ . For non-trivial solution, eliminating of ϕ from 

equations (14) and (15), yields to the following equation: 

2 2
2 4 63 5 35

16 4 16 256 2 4

F
a a a

a

α µσ    = − + − ± −   
   

     (16) 

Equation (16) represents the frequency-response equation 

of the primary resonance case. The peak amplitude pa of the 

system under study at the primary resonance obtained from 

(16) is given by p

F
a

µ
=  which is inversely proportional to

µ . From this equation, we can say that increasing of damping 

factor µ  can decrease the value of pa . Furthermore we 

notice that the coefficient of quintic- septic nonlinearity does 

not affect the peak amplitude of the primary resonance 

response. However the corresponding location of the peak 

amplitude, depend on α , µ  and F according to the 

following relationship: 

2 2
3

2 2

3 5
35

16 4 16
p

F F
F

ασ
µ µ

  
= −  − −    

  

 

Equations (14) and (15) show that is no trivial solution at 

0a = . To determine the stability of the nontrivial solution, let 

0 1
a a a= +                  (17) 

0 1
ϕ ϕ ϕ= +                  (18) 

where, 
1

a and 
1

ϕ are slight variations. Inserting equations 

(17) and (18)into equations (12) and (13) and canceling 

nonlinear terms, we obtain the eigenvalues of the 

corresponding Jacobian matrix, which are the roots of: 

2 0Pλ µλ+ + =              (19) 

where 
2

2 4 2 2 4 23 5 7 9 5 49
(1 ) (1 )

4 16 64 16 16 64 16
P a a a a a a

µ α ασ σ  = + + − − + − −  
  

 

According to the Routh-Wurwitz criteria for stability [30], the 

steady state solution for the primary resonance case is 

asymptotically stable if and only if µ  and P are greater than zero. 

The amplitude response curves of the primary resonance 

case showing the effects of α , µ and F are plotted in 

Figures1(a)-(d). In Figure 1(a) we note that when α  

increases and takes the value 1, the softening behavior 

displayed by 0α = persists but the corresponding location of 

the peak amplitude decreases. For high value of α  the 

hardening-softening behavior so-called mixed behavior is 

obtained with a wide decreasing of location of the peak 

amplitude. Therefore it appears in the system hysteresis, jump 

and bifurcation phenomena. For negative value of α , the 

hardening behavior is dominant and softening-hardening 

behavior is also observed (Figure 1(b)). From these 

observations we can conclude that the parameter α captures 

more the nonlinearity of the system understudy and is 

effectively responsible of mixed behavior. When the 

excitation amplitude F decreases, the maximum value of the 

amplitude decreases considerably and hysteresis, jump and 

bifurcation phenomena disappear in the system (Figure 1(c)). 

In Figure 1(d) we observe the inverse variations illustrated in 

Figure1(c). For certain values of the system parameters, the 

model can exhibit limit cycles whose topology is perturbed by 

the quintic-septic nonlinearity as illustrated in Figures 2 

(a)-(d). In these figures, we observe periodic limit cycles 

oscillations when α  is positive and different shapes of 

quasi-periodic state signature for negative values of α . 

2.2. Other type of Resonant States 

In this subsection, we consider that the periodic external 

force is wide, that is to say ( 0F Fε= ). In this condition other 
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type of oscillations can be displayed by the model, namely 

sub-harmonic, super-harmonic, sub-super-harmonic and 

super-sub-harmonic oscillatory states. Applying the multiple 

time scales method, we obtain the following system: 

0 2
0 0 0: cos( )D u u Fε τ+ = Ω         (20) 

1 2 3
0 1 1 0 1 0 0 0 0

2 5
0 0

1
: 2

2

1
1

4 2

D u u D D u D u u

u u

ε µ

α

+ = − − +

 − − 
 

        (21) 

The general solution of equation (20) is: 

( ) 0 0
0 0 1 1, ( ) .

iT i T
u T T A T e e c c

Ω= + Λ +       (22) 

where 

( )22 1

FΛ =
− Ω

. Substituting (22) into (21) yields to: 

0

0

2 2 2 3 2
0 1 1 1

2 2 4 4 3 2 3 2

2 4 6

3 2 2 3

5 3 3 3 2 2

5 7

2 3 3 2

3
[ 2 3 (10

2 4

35
60 30 420

2

315 70 )]

3
[ 3 (30 60

2 4

10 70 315

35
210 )]

2

3 105
[ (20 30
2 4

iT

i T

D u u iD A i A A A A A A

A A A A A A A

A A A e

i AA A A AA

A A A A

AA e

A AA A

αµ

αµ

α

Ω

+ = − − + + Λ −

+ Λ + Λ − − Λ

− Λ − Λ

+ − Ω + Λ + Λ − Λ + Λ

+ Λ − Λ − Λ

− Λ − Λ

+ Λ − Λ + Λ −

0

0

0

0

2 4

( 2)3 3 2 5

2 2 2 4 6

(2 1)2 2 3 5 2

3
3 5 3 2 2

35 7

( 4)4 5 3 4

2 3 2

2

210 105 )]

3 105
[ (30 20
2 4 2

210 210 )]

[ (20 5 105
2 4

21
105 )]

2

105
[5 21 ]

4 2

[10 105
4

i T

i T

i T

i T

A A

AA A e

A AA A A

A A AA e

AA A A

AA e

A AA A e

A AA

α

α

α

α

Ω−

Ω−

Ω

Ω−

Λ

− Λ − Λ

+ Λ − Λ + Λ − Λ

− Λ − Λ

Λ+ − Λ + Λ + Λ

− Λ − Λ

− Λ − Λ − Λ

− Λ − Λ 0

0

0

0 0

0 0

0

(2 3)4 4 3

(3 2)3 2 5 2 3 3

(4 1)4 4 2 6

5 ( 6)5 7 5 6

(2 5) (5 2)2 5 5 2

(6 1) (6 3 4

70 ]

105
[10 70 ]

4 2

105
[5 21 ]

4 2

7 7
[ 21 ]

4 2 8

21 21

4 8

7 35

8 8

i T

i T

i T

i T i T

i T i T

i T i

A e

A A AA e

A AA A e

AA e A e

A e A e

Ae A e

α

α

α α

α α

α α

Ω−

Ω−

Ω−

Ω Ω−

Ω− Ω−

Ω−

− Λ

− Λ − Λ − Λ

− Λ − Λ − Λ

− Λ − Λ − Λ + Λ

+ Λ + Λ

+ Λ + Λ 0

0 0

3 4)

(4 3) 74 3 735
.

8 8

T

i T i T
A e e NST c c

αα

Ω−

Ω− Ω+ Λ + Λ + +

 (23) 

where “ NST ” is non secular term and “c. c” denotes the 

complex conjugate term. Evaluation of (23) shows that the 

system presents three sub-harmonics, three super-harmonics, 

three sub-super-harmonics and three super-sub-harmonics 

resonances states such as: 

a) Sub-harmonic 

3 εσΩ = + ; 5 εσΩ = + ; 7 εσΩ = +  

b) Super-harmonic 

3 1 εσΩ = + ; 5 1 εσΩ = + and 7 1 εσΩ = +  

c) Sub-super-harmonic 

2 6 εσΩ = + ; 2 4 εσΩ = + and 3 5 εσΩ = +  

d) Super-sub-harmonic 

4 2 εσΩ = + ; 5 3 εσΩ = + and 6 2 εσΩ = + . 

2.2.1. Sub-harmonic Resonant States 

Considering in this paragraph 3 εσΩ = + , and injecting 

this condition into (23) and setting secular terms equal to 0, we 

obtain: 
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Figure 1. Frequency-response curves for primary resonance showing the 

effects of: (a, b) α ; (c) F and (d) µ . 

 

 

 

Figure 2. Effects of the quintic-septic nonlinearity on the limit cycles 

oscillations with the parameters µ = 0.01, F = 0.001 and Ω = 1. (a) α = −30; 

(b) α = −0.4; (c) α = −0.04 and (d) α = 30. 

( )
( ) 1

2 2 3 2 2 2 4 4 3 2 3 2 2 4 6
1

2 3 3 2 2 4 3 3 2 5

3 35
2 3 10 60 30 420 315 70

2 4 2

3 105
20 30 210 105 0

2 4 2

i T

iD A i A A A A A A A A A A A A A A A A

A AA A A A AA A e
σ

αµ

α

− − + + Λ − + Λ + Λ − − Λ − Λ − Λ +

 Λ − Λ + Λ − Λ − Λ − Λ = 

      (24) 
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Using the polar form into (24) and separating real and 

imaginary parts, we obtain the following modulation equations: 

sin
2

a
a Qµ θ′ = − +               (25) 

3
3 cos

Q
Y

a
θ σ θ′ = − +             (26) 

where 

2
2 4 2 2 4

6 2 4 4 2 6

3 3 5 15
15

16 2 4 16 2

35 105 315
35

256 4 8

a
Y a a

a a a

α = − − Λ − + Λ + Λ


− − Λ − Λ − Λ 


 

and 

2 4 3 2 6 3 4 5 23 5 15 105 105 105

8 4 4 4 128 8 4
Q a a a a a a

α  = Λ − Λ + Λ − Λ − Λ − Λ 
 

 

and 

1 13 ( )T Tθ σ β= − . 

For steady state solution, 0a θ′ ′= = , in (25) and (26) we 

get: 

sin
2

a
Q θ µ=                (27) 

cos
3

a
Q aY

σθ = − +             (28) 

Equations (27) and (28) show that there are two possibilities: 

(trivial solution) at 0a = and (nontrivial solution) at 0a ≠ . 

Squaring and adding (27) and (28) we get the frequency 

-response equation for sub-harmonic resonance of order 
1

3
: 

2 2

3
4

Q
Y

a

µσ
 

  = ± −   
 

           (29) 

The stability analysis of the trivial solution is equivalent to 

the analysis of the linear solution of equation (24) by 

neglecting the non-linear terms. Thus, we obtain: 

( )2 2 42 3 30 70 0iA i A Aµ′− − + Λ + Λ − Λ =     (30) 

To solve (30), we inject ( )1

1

2
1 1( ) ( )

i T

A e B T ib T
σ

= +  

where B  and b  are real into equation (30). Separating real 

and imaginary parts, we get: 

( )2 4 21 5
3 3 7

2 2 2
B B b

µ σ α ′ = − + + Λ − Λ − Λ 
 

   (31) 

( )2 4 21 5
3 3 7

2 2 2
b B b

µσ α ′ = − + Λ − Λ − Λ − 
 

  (32) 

The eigenvalues of the Jacobian matrix satisfy the equation: 

2
2 0Pλ µ λ+ + =              (33) 

where 

( )
22

2 4 2
2

1 5
3 3 7

4 4 2
P

µ σ α = + + Λ − Λ − Λ 
 

. 

According to the Routh-Wurwitz criteria for stability, the 

trivial steady-state solution for the sub-harmonic resonance of 

order
1

3
 is asymptotically stable since 0µ > and 2 0P > . 

The stability of the nontrivial steady-state sub-harmonic 

resonance of order 
1

3
 is determined by the eigenvalues of the 

corresponding Jacobian matrix, which are the roots of 

2
3 4 0P Pλ λ+ + =                (34) 

where 

0
3 0

0

( )
2

2 ( )

Q a
P a

Q a
µ
 ′

= − 
 

 

and 

( ) ( )220
4 0 0 0 0 0

0

( ) 3 1
1 3 ( ) 3 ( ) ( )

( ) 4 3

Q a
P a Y a a Y a Y a

Q a
µ σ σ

 ′   ′= − + − + −  
  

 

According to the Routh-Wurwitz criteria for stability, the 

nontrivial steady-state solution for the sub-harmonic 

resonance of order 1/3 is asymptotically stable if and only if 

3 0P > and 4 0P > . The frequency-response curves for 

sub-harmonic resonance of order1/3illustrating the effects of 

the parameters α , F  and  are represented in Figures 

3(a)-(d). In Figure 3(a) we observe that when α  increases 

the softening behavior observed in the case 0α =  change 

into hardening behavior, that is to say the response amplitude 

of the 
1

3
 sub-harmonic resonance, which consist of two 

branches move to the right. Then it appears in the system jump 

and bifurcation phenomena. It is important to point out that 

this increasing of α  affect the maximum value of the 

response amplitude and the location of minimum value of the 

response amplitude. For negative value of α  the softening 

behavior is dominant but the location of minimum value of the 

response amplitude increases while the maximum amplitude 

value decreases (Figure 3(b)). From Figure 3(c) we note that 

jump and bifurcation phenomena exist since the hardening 

behavior is obtained. Moreover the resonance bandwidth and 

the location of minimum value of the response amplitude 

increase with increasing of F . However the maximum 
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response amplitude decreases when the excitation amplitude 

F increases. When µ increases, the minimum value of the 

response amplitude highly increases but this variation of µ  

has no effect on the maximum value of the 
1

3
 sub-harmonic 

resonance response (Figure 3(d)). 

 

 

 

 

Figure 3. Frequency-response curves for 1/3 sub-harmonic resonance 

illustrating the effects of: (a, b) α ;(c) F  and (d) µ . 

Considering the case 5 εσΩ = + , and inserting this 

relation into (23) and eliminating secular terms, we get 

2 2 3 2
1

3
2 3 (10

2 4
iD A i A A A A A A

αµ− − + + Λ −  

2 2 4 4 3 2 3 235
60 30 420

2
A A A A A A A+ Λ + Λ − − Λ  

2 4 6
315 70 )A A A− Λ − Λ  

14 5 3 4105
[5 21 ] 0

4 2

i T
A AA A e

σα− Λ − Λ − Λ =    (35) 

Using the polar form 1( )
1

1
( )

2

i T
A a T e

β= into equation (35) 

and separating real and imaginary parts, we obtain the 

following modulation equations: 

sin
2

a
a Rµ θ′ = − +               (36) 

5
5 cos

R
Y

a
θ σ θ′ = − +              (37) 

where 

2
4 65 21 21

1
4 16 2 64

R a a
α   Λ Λ Λ= − − −      

 and 1 15 ( )T Tθ σ β= −  

Introducing the steady-state condition 0a θ′ ′= = , into 

equations (36) and (37), we obtain: 

sin
2

a
R θ µ=                 (38) 

cos
5

a
R aY

σθ = − +              (39) 
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Equations (38) and (39) show that there are two possibilities: 

(trivial solution) at 0a = and (nontrivial solution) at 0a ≠ . 

The stability of the trivial steady-state sub-harmonic 

resonance of order 
1

5
is the same that those examined in the 

case of the sub-harmonic resonance of order 
1

3
. 

Squaring and adding (38) and (39) we get after some 

mathematical manipulations the following 

frequency-response equation of the sub-harmonic resonance 

of order
1

5
: 

2 2

5
4

R
Y

a

µσ
 

  = ± −   
 

           (40) 

The stability of the nontrivial steady-state sub-harmonic 

resonance of order 
1

5
is examined by the eigenvalues of the 

corresponding Jacobian matrix, which are the roots of 

2
5 6 0P Pλ λ+ + =               (41) 

where 

0
5 0

0

( )
3

2 ( )

R a
P a

R a
µ
 ′

= − 
 

 

and 

( ) ( )220
6 0 0 0 0 0

0

( ) 3 1
1 5 ( ) 5 ( ) ( )

( ) 4 5

R a
P a Y a a Y a Y a

R a
µ σ σ

 ′   ′= − + − + −  
  

 

If the two inequalities 5 0P > and 6 0P >  are satisfied then 

the steady-state solution will be asymptotically stable. 

Figures 4(a)-(c) present the effects of α  and F on the 

sub-harmonic resonance solution of order
1

5
. In Figure 4(a) 

we note that the frequency-response curves of this case of 

oscillation is obtained for high positive values of detuning 

parameter. In this figure we observe that when α increases 

positively the response amplitude curves move to the right 

with a large increasing of the resonance frequency. When α  

takes negative value the obtained variations are contrary to 

those shown in Figure 3(b). From Figure 4(c) we note the 

same variations as illustrated in Figure 3(a) but with a high 

value of excitation amplitude. 

2.2.2. Super-harmonic Resonant States 

Using the super-harmonic resonance relation 3 1 εσΩ = +
into equation (23), the condition for eliminating secular terms 

in the problem is given by: 

( )

( ) 1

3 22 2 3 2 2 2 4 4 2 3 4 2 6
1

3
23 5 3 2 5 7

3 35
2 3 10 60 30 420 315 70

2 4 2

21
20 5 105 105 0

2 4 2

i T

iD A i A A A A A A A A A A A A A A A A

AA A A AA e
σ

αµ

α

− − + + Λ − + Λ + Λ − − Λ − Λ − Λ

Λ + − Λ + Λ + Λ − Λ − Λ = 


           (42) 

Using the polar form 1( )
1

1
( )

2

i T
A a T e

β= into equation (42) 

and separating real and imaginary parts, we obtain the 

following modulation equations: 

sin
2

a
a Mµ θ′ = − +              (43) 

cos
M

Y
a

θ σ θ′ = − +              (44) 

Where 

3
3 2 5 3 4 5 2 7105 105 21

5 5
2 4 16 4 2

M a a a
αΛ  = − Λ + Λ + Λ − Λ − Λ 
 

 

and 1 1( )T Tθ σ β= − . 

Using the steady-state solution, 0a θ′ ′= = in equations (43) 

and (44), we get: 

sin
2

a
M θ µ=               (45) 

cosM a aYθ σ= − +              (46) 

After a few algebraic operations we obtain the 

frequency-response equation for super-harmonic resonance of 

order 3. 

2 2

4

M
Y

a

µσ  = ± − 
 

            (47) 

From equations (45) and (46) we notice that there only 

exists non-trivial solution at 0a ≠ .  

The stability of the steady-state super-harmonic resonance 

of order 3 is determined by the eigenvalues of the 

corresponding Jacobian matrix, which are the roots of 

2
7 8 0P Pλ λ+ + =                (48) 

where 

0
7 0

0

( )
1

2 ( )

M a
P a

M a
µ
 ′

= − 
 

 

and 

( ) ( )220
8 0 0 0 0 0

0

( ) 1
1 ( ) ( ) ( )

( ) 4

M a
P a Y a a Y a Y a

M a
µ σ σ

 ′   ′= − + − + −  
  
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Figure 4. Frequency-response curves for 1/5 sub-harmonic resonance 

exhibiting the effects of: (a, b) α  and (c) F . 

According to the Routh-Wurwitz criteria for stability, the 

steady-state super-harmonic resonance of order 3is 

asymptotically stable if and only if 7 0P > and 8 0P > . 

 

 

 

Figure 5. Frequency-response curves for super-harmonic resonance of order 

3 showing the effects of: (a, b) α and (c) F . 

Figures 5(a)-(c) show the effects of α and F on the 

super-harmonic resonance response of order 3. In Figure 5(a), 

we notice that when α  takes the value 1 the response 

amplitude consists of two curves move to the right. Therefore 
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hardening behavior is obtained and jump and bifurcation 

phenomena exist. However the hysteresis phenomenon 

disappears in the system. Furthermore increasing of α reduced 

considerably the maximum value of the response amplitude and 

when 5α = , the resonance curves touch at one location. At this 

location, the corresponding amplitude is critical. For negative 

value of α softening behavior becomes dominant with 

decreasing of the response amplitude. The resonance curves 

touch at different locations and become open like those of the 

undamped oscillator (Figure 5(b)). From Figure 5(c) we note 

that increasing of F  decreases the maximum value of the 

response amplitude but the resonance bandwidth increases. 

Moreover we observe that when 2F = the lower branch of the 

super-harmonic resonance of order 3 disappears on the 

considered interval for detuning parameter σ. 

Another case of oscillation where 5 1 εσΩ = + is treated in 

this part. Injecting this condition into (23) and eliminating the 

resulting secular we get: 

( ) 1

73 23 35 72 2 3 2 2 2 4 4 2 3 4 2 6 5 52 3 10 60 30 420 315 70 21 0
1 2 4 2 4 2

i T
iD A i A A A A A A A A A A A A A A A A AA e

α α σµ
 Λ
 − − + + Λ − + Λ + Λ − − Λ − Λ − Λ − Λ − − Λ =
 
 

  (49) 

Inserting the polar form of the A  into (49) and separating 

real and imaginary parts, we obtain the following modulation 

equations: 

sin
2

a
a Sµ θ′ = − +               (50) 

cos
M

Y
a

θ σ θ′ = − +              (51) 

where 

5 5 2 721 7

4 4 2
S a

α  = − Λ − Λ − Λ 
 

 

and 1 1( )T Tθ σ β= −  

Introducing the steady-state solution, 0a θ′ ′= = , into 

equations (50) and (51), we get: 

sin
2

a
S θ µ=                (52) 

cosS a aYθ σ= − +             (53) 

Eliminating of θ  from this equation systems yields to after 

a few algebraic manipulations the following 

frequency-response equation for super-harmonic resonance of 

order 5: 

2 2

4

S
Y

a

µσ  = ± − 
 

          (54) 

The stability of the steady-state 5:1super-harmonic 

resonance response is determined by the eigenvalues of the 

corresponding Jacobian matrix, which are the roots of 

2
9 10 0P Pλ λ+ + =               (55) 

where 

0
9 0

0

( )
1

2 ( )

S a
P a

S a
µ
 ′

= − 
 

 

And ( )220
10 0 0 0 0 0

0

( ) 1
1 ( ) ( ( ) ) ( )

( ) 4

S a
P a Y a a Y a Y a

S a
µ σ σ

 ′   ′= − + − + −  
  

 

According to the Routh-Wurwitz criteria for stability, the 

non-trivial steady-state solution of the super-harmonic 

resonance of order 5 is asymptotically stable if and only if

9 0P > and 10 0P > . 

The frequency-response curves for super-harmonic 

resonance of order5 exhibiting the effects of α  and F  is 

presented in Figures 6(a)-(c). In this case of oscillation, the 

response amplitude is obtained for large value of detuning 

parameter. From Figures 6(a) and (c), the response amplitude 

consists of two curves which move to the right and have 

hardening behavior. Therefore jump and bifurcation 

phenomena exist in the system. For negative value of α 

resonance curves move to the left pointing out that the 

system displays the softening behavior (Figure 6 (b)). 

2.2.3. Sub-super- and Super-sub-harmonic Resonant States 

In this paragraph we consider the case of 

sub-super-harmonic resonance 2 4Ω ≅  and therefore set

2 4 εσΩ = + . Eliminating secular terms from (23), we obtain 

the following equation: 

(
)

( ) 1

2 2 3 2 2 2 4
1

3 24 2 3 4 2 6

42 3 2 4 3

3
2 3 10 60 30

2 4

35
420 315 70

2

10 105 70 0
4

i T

iD A i A A A A A A A A A

A A A A A A A

A AA A e
σ

αµ

α

− − + + Λ − + Λ + Λ

− − Λ − Λ − Λ

− Λ − Λ − Λ =

 (56) 

Injecting the polar form of the A into equation (56) and 

separating real and imaginary parts, we obtain the following 

modulation equations: 

sin
2

a
a Lµ θ′ = − +                 (57) 

4
4 cos

L
Y

a
θ σ θ′ = − +              (58) 

where 
2 3

2 25 21
1 7

16 8

a
L a

αΛ  = − − − Λ 
 

and 1 14 ( )T Tθ σ β= −  

For steady state solution, 0a θ′ ′= = , in equations (57) and 

(58), we obtain: 
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sin
2

a
L θ µ=                  (59) 

cos
4

a
L aYθ σ= − +               (60) 

Equations (59) and (60) show that there are two possibilities: 

(trivial solution) at 0a = and (nontrivial solution) at 0a ≠ . 

Squaring and adding (59) and (60) we get the following 

frequency-response equation after a few mathematical 

manipulations: 

2 2

4
4

L
Y

a

µσ
 

  = ± −   
 

           (61) 

The stability of the trivial sub-super-harmonic resonance of 

order 
1

2
 is the same that those obtained in the case of the 

sub-harmonic resonance of order
1

3
. However the stability of 

the nontrivial steady-state response is analyzed by the 

eigenvalues of the corresponding Jacobian matrix, which are 

roots of 

2
11 12 0P Pλ λ+ + =              (62) 

where 

0
11 0

0

( )5

2 2 ( )

L a
P a

L a
µ
 ′

= − 
 

 

( )2 20
12 0 0 0 0 0

0

( )1
1 ( ( ) ) ( ( ) ) ( )

4 ( )

L a
P a Y a a Y a Y a

L a
µ σ σ

 ′
′= − + − + − 

 
 

According to the Routh-Wurwitz criteria for stability, the 

steady-state solution of the sub-super-harmonic resonance of 

order
1

2
is asymptotically stable if and only if 11 0P > and

12 0P > . The frequency-response curves for 

sub-super-harmonic resonance of order 
1

2
 displaying the 

effects of α and F are represented in Figures 7(a)-(c). In Figure 

7(a) we observe that the response amplitude is obtained for 

high positive values of detuning parameter. This response 

composed of two branches move to the right. Then hardening 

behavior and bifurcation phenomenon exist in the system. 

Furthermore when α  increases the resonance bandwidth and 

the resonance frequency increase. When α takes negative 

value the softening behavior is dominant in the system (Figure 

7(b)). In Figure 7(c) when F increases, we notice the same 

variations illustrated in Figure 7(a). 

 

 

 

Figure 6. Frequency-response curves for super-harmonic resonance of order 

5 showing the effects of: (a, b) α and (c) F . 
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Figure 7. Frequency-response curves for 1/2 sub-super-harmonic resonance 

exhibiting the effects of: (a, b) α and (c) F. 

At present we consider the case of super-sub-harmonic 

resonance 4 2Ω ≅ and therefore set 4 2 εσΩ = + . Eliminating 

secular terms from (23), we obtain the following equation: 

(
)

( ) 1

2 2 3 2 2 2 4
1

3 24 2 3 4 2 6

24 4 6

3
2 3 10 60 30

2 4

35
420 315 70

2

105
5 21 0

4 2

i T

iD A i A A A A A A A A A

A A A A A A A

A AA A e
σ

αµ

α

− − + + Λ − + Λ + Λ

− − Λ − Λ − Λ

− Λ − Λ − Λ =

 (63) 

Inserting the polar form of the A into (63) and separating 

real and imaginary parts, we obtain the following modulation 

equations: 

sin
2

a
a Kµ θ′ = − +             (64) 

2
2 cos

K
Y

a
θ σ θ′ = − +           (65) 

where, 

4 4 3 65 105 21

4 2 16 2
K a a a

α  = − Λ − Λ − Λ 
 

and 1 12 ( )T Tθ σ β= −  

For steady-state solution, 0a θ′ ′= = , in (64) and (65) we 

obtain: 

sin
2

a
K θ µ=               (66) 

cos
2

a
K aYθ σ= − +             (67) 

Equations (66) and (67) show that there are two possibilities: 

(trivial solution) at 0a = and (nontrivial solution) at 0a ≠ . 

Squaring and adding (66) and (67), we get after a few 

mathematical operations the following frequency-response 

equation: 

2 2

2
4

K
Y

a

µσ
 

  = ± −   
 

            (68) 

The stability analysis of the trivial solution is equivalent to 

the analysis of the linear solution of (63) by neglecting the 

non-linear terms. Thus we get: 

12 4 6 4 62 3 30 70 (5 21 ) 0
4

i TiA i A A A A A A e σαµ  ′− − + Λ − Λ − Λ + Λ − Λ =
   (69) 

To solve (69) one lets ( )1
2

1 1( ) ( )

i
T

A e B T ib T
σ

= + where B  

and b are real and imaginary parts, and we get after inserting

A into (69), the following linear equations system: 

2 4 21
3 (35 91 )

2 2 4
B B b

µ ασ ′ = − + + Λ − Λ − Λ 
 

  (70) 

2 4 21
3 (35 91 )

2 4 2
b B b

α µσ ′ = − + Λ − Λ − Λ − 
 

  (71) 

The characteristic equation of the corresponding Jacobian 
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matrix is given by 

2
13 0Pλ µλ+ + =                (72) 

where 

22
2 4 2

13

1
3 (35 91 )

4 4 4

 = + + Λ − Λ − Λ 
 

P
µ ασ  

According to the Routh-Wurwitz criteria for stability, the 

trivial solution of the super-sub-harmonic resonance of order 2 

is asymptotically stable since 13 0P >  and µ is here positive. 

The stability of the nontrivial steady-state super-sub-harmonic 

resonance of order 2 given by (68) is determined by the 

eigenvalues of the characteristic equation, which are the roots 

of: 

2
14 15 0P Pλ λ+ + =              (73) 

where 0
14 0

0

( )
5

2 ( )

K a
P a

K a

µ  ′
= − 

 
 

and 

( ) ( )220
15 0 0 0 0 0

0

( )1 1
1 ( ) ( ) ( )

2 ( ) 2

K a
P a Y a a Y a Y a

K a
µ σ σ

 ′   ′= − + − + −  
  

The nontrivial steady-state solution for the 

super-sub-harmonic resonance of order 2 is asymptotically 

stable if and only if 14 0P > and 15 0P > . Figures 8(a)-(c) 

represent the effects of α and F on the super-sub-harmonic 

resonance of order 2. In this oscillation case, the response 

amplitude is obtained for high positive values. In Figure 8(a) 

and (c), the response amplitude consists of two branches 

which bend to the right and have hardening nonlinearity. 

Therefore it appears in the system jump and bifurcation 

phenomena. However the hysteresis phenomenon does not 

exist. In these figures, when α and F increase, the resonance 

bandwidth increases. For negative value of α, the response 

amplitude displays a softening behavior (see Figure 8(b)). 

 

 

 

Figure 8. Frequency-response curves for super-sub-harmonic resonance of 

order 2 illustrating the effects of: (a, b) α and (c)F. 

3. Bifurcation and Transition to Chaos 

Since the forced damping Duffing oscillator is subjected to 

quintic-septic nonlinearity, then the complex phenomena must 

arise in the model described by (2) for different resonant states. 

Therefore the aim of this section is to investigate the 

conditions under which the complex phenomena arise in the 

model because they are of interest in many physics and 

engineering problems. For this purpose the fourth-order 

Runge-Kutta algorithm is used to solve numerically and draw 

the bifurcation diagram and its corresponding largest 

Lyapunov exponent of the (2). The largest Lyapunov exponent 

that is used as a good measure of characterization of chaos in 

the system is defined as follows: 

( )2 2
ln

lim
u

t

du dv

Lya
t→∞

+
=              (74) 

Where du and udv are the variations of u  and u ′  

respectively. The time periodic of the periodic stroboscopic 

bifurcation diagram used to map the transition is 
2

T
π=

Ω
. 
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For set of parameters 0.5, 0.5α µ= − = and 1Ω = , the 

bifurcation diagram and its corresponding Lyapunov exponent 

are represented in Figure 9. From these figures we can notice 

that the existence of periodic, quasiperiodic and chaotic 

motions. In order to have an idea on the system behavior 

predicted by these diagrams, various phase portraits are 

plotted for several different values of the excitation amplitude 

F using the parameters of Figure 9 (see Figures10 and 11). 

 

Figure 9. Bifurcation diagram and its corresponding Lyapunov of an 

extended Duffing oscillator versus F with 0.5, 0.5= − =α µ ; 1Ω = . 

 

 

Figure 10. Periodic orbits of an extended Duffing oscillator with the 

parameters of Figure 9. (a): Orbit 1 T , 2=F ; (b): Orbit 2 T , 3.75=F ; 

(c):Orbit 3 T , 10=F  and (d): Orbit 4 T , 25=F . 

 

 

 

 

Figure 11. Chaotic orbits of an extended Duffing oscillator with the 

parameters of Figure 9. (a): 5.5=F  (b): 8.01=F ;(c): 16.25=F and (d):

21.5=F . 
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The influence of the quintic-septic nonlinearity and linear 

damping coefficients on the bifurcation sequences are 

investigated and reported in Figures 12. From these figures it is 

found that decreasing of the dissipation coefficient µ
accentuates the chaotic motions while increasing of 

quintic-septic coefficient α reduces the chaoticity of the 

system but increases the regions of the periodic oscillations. In 

order to detect the resonant states where the chaotic motions are 

dominant, the bifurcation diagrams showing the variations of 

u  versus Ω  for different values of the excitation amplitude 

F are presented in Figures13. We can note that the number of 

bifurcations depend on the value of F . Furthermore the 

chaotic motions are also influenced by the excitation amplitude 

and resonant frequency values. To illustrate such situation, the 

phase portraits are represented for different values of the 

excitation amplitude F  (see Figures14). We observe that for 

8.01F =  the system under study has the possibility to display 

chaotic motions for the primary resonance and 

super-sub-harmonic resonance of order 2. Moreover when 

21.5F = , the system presents in addition chaotic behavior at 

the sub-super-harmonic resonance of order 2. 

 

 

Figure 12. Effect of 0.01= −α  (left) 0.1=µ (right) on the Bifurcation 

diagram and its corresponding Lyapunov with the parameters of Figure 9. 

 

 

Figure 13. Bifurcation diagrams of an extended Duffing oscillator versus Ω 

with the parameters of Figure 9. (a): 8.01=F and (b): 29.5=F . 

4. Conclusion 

In this work we have presented the study of chaotic 

dynamics of a cubic-quintic-setpic Duffing oscillator under 

periodic excitation. The particularity of this study is linked at 

fact that one only parameter is here used to control the 

quintic-septic nonlinearity. The multiple scales method 

applied to this extended Duffing equation has generated 

thirteen resonance states which of seven are thoroughly 

studied. The modulation equations of each considered 

resonance oscillation case are derived. The steady-states 

solutions and theirs stabilities are determined. The 

frequency-amplitude curves obtained show that the model 

displays mixed behavior, limit cycles, hysteresis, bifurcation 

and jump phenomena. It is found that these phenomena are 

considerably affected by quintic-septic nonlinearity 

coefficient and excitation amplitude. The numerical 

simulations directly performed on the model through 

bifurcation and Lyapunov exponent diagrams have revealed 

that periodic, multi-periodic oscillations and chaotic motions 

take place in the system. These motions predicted by these 

diagrams are confirmed by various phase portraits. The effects 

of linear dissipation µ , quintic-septic nonlinearity α and 

external amplitude influence strongly the chaotic behavior of 
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the system. Furthermore it is also found that the capacity of 

the system has developed more chaotic motions depend on the 

values of excitation amplitude F  and resonant frequency 

Ω . Finally we can affirm that the carried on objective in this 

work is attained since the quintic-septic nonlinearity affects 

the dynamic of softening damping Duffing oscillator. 

 

 

Figure 14. Phase Portraits of an extended Duffing oscillator for super-sub- 
and sub-super-harmonic resonance states with the parameters of Figure 9. (a): 

8.01, 1 2= Ω =F and (b): 21.5, 2= Ω =F . 
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