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Abstract: The article provides an analytical solution to the problem of pyrometric determination of the actual surface 
temperature T(K) by calculating its value from a system of three equations, including the results of three measurements of the 
brightness temperature TS(λі), which were obtained at three wave length sof the spectrum: λ1<λ2<λ3 with unknown emissivity 
ε1, ε2 and ε3, in the framework of the two main methods of spectral pyrometry according to the patents of Ukraine No.73231 
(color) and No.82870 (brightness). It is shown in the article that exact analytical solutions are possible only in cases when the 
nature of the dispersion of the selective surface ε=f(λ) (for example, linear, logarithmic, etc.) is known apriori, which, together 
with the equation of coupling ε2 = F(ε1, ε3), allows us to determine the exact value of the intermediate (effective) length λ2 

waves based on the extreme (or basic) values of λ1 and λ3. The arithmetic mean (for the color method) and the proportional 
mean (for the brightness method) are use dascoupling equations. 

Keywords: Spectral Pyrometry, Brightness Pyrometer, Color Pyrometer, Double Spectral Ratio, Trichromatic Method, 
Coupling Equation 

 

1. Introduction 

In modern thermometry, the task of measuring surface 
temperatures in cases where it is so high that it is no longer 
possible to use thermocouples is very important. In such 
cases, use pyrometers. Pyrometers can be used for 
measurements and at low temperatures, but only in those 
cases where thermocouples cannot be placed on the surface 
(for example, for surfaces of revolution, etc.). And also in 
cases of determining rapidly changing surface temperatures 
in non-stationary processes, since thermocouples in such 
cases give a very high error, since they have a large inertia 
(time constant τo). 

Pyrometry is a contactless thermometry method in which 
the absolute temperature T(K) of a certain surface is 
determined on the basis of measurements of the intensity of 
its own thermal radiation. However, most traditional methods 
of pyrometric temperature measurement have one 
fundamental flaw: the result of their measurement is not the 
actual temperature, but the “pseudo-temperature” 
(“radiation”, “brightness” or “color”), for converting which 
into actual temperature it is necessary to know a priori the 

radiative temperature surface abilities. Most often such data 
is missing or unreliable. Therefore, usually when pyrometric 
measurement of the temperature of any surface, it is 
necessary to additionally determine its emissivity ε(λ, T). 
Existing methods for measuring emissivity are very complex 
and expensive, so the task of developing combined methods 
of spectral pyrometry in which three or more pseudo-
temperature measurements are taken in different spectral 
ranges is very urgent, and then combining the equations 
obtained so that the result of determining T(K) did not 
depend on the emissivity of the surface. 

2. Literature Review 

The theoretical basis of radiation pyrometry was the 
Stefan-Boltzmann law (E = σоТ

4), established empirically by 
Stephen in 1879 and theoretically substantiated by 
Boltzmann in 1884 [1, 2]. However, the first pyrometer, 
invented by Le Chatelier in 1892, was based not on integral, 
but on spectral regularities of thermal radiation. Although the 
Wien's formula [4], which is used as a theoretical basis for 
spectral pyrometers, was established a little later, in 1896, the 
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use of an Le Chatelier optical pyrometer showed that spectral 
pyrometry due to measurements then made it possible to get 
an unreal value of the absolute surface temperature, but only 
a certain estimate of it, that is, a conditional “pseudo-
temperature”, for recalculating it into temperature T(K), a 
preliminary determination of its emissivity ε is necessary. 
The first attempt to solve this problem without determining ε 
was the introduction of an additional equation (for the 
closure of a system of equations) in the form of a dispersion 
curve of the radiating power ε = f(λ) of a flame (according to 
Bouguer law). It was first used by Angstrom in 1889 when 
estimating the temperature of the flame of a stearin candle. 

Regarding the choice between methods of spectral and 
radiation pyrometry [3-5], it can be said that radiation 
method is not suitable for measuring the temperature of 
surfaces for which its changes very rapidly with time, which 
happens in non-stationary processes of cooling or heating. In 
such cases, only spectral methods make it possible to obtain 
most accurate values of T(τ), since their “time constant” τo is 
very small (time constant τo of photodiodes is 10–6−10–7 
sec.). 

The method of brightness pyrometry [6] is widely known 
for determining the temperature T of a selectively radiating 
surface. Typically, in this method, the brightness temperature 
TS is determined by the formula: (ТS)

−1= Т−1− (λ/С2)⋅ln(ε) 
using the known emissivity of the surface (usually measured 
for λ = 0.65 µm, C2 = 1.439·104µm·K). Its values are taken 
from the relevant section of the pyrometry reference books 
[6]. The databank presented in the reference books is 
obtained from a formula for TS by measuring the brightness 
temperature of surfaces whose temperature is known. The 
main disadvantage of this method is that in most cases the 
value of the spectral emittance of surfaces ε given in 
reference books was previously determined at any one 
specific temperature. And it is known that the emissivity of 
materials significantly depends on temperature, for example, 
for metals, using the Ashkinass formula: ε = 5.67√(T·ro) [7], 
where ro is the electrical resistivity. In addition, in real cases, 
the value of ε depends on the surface treatment, the presence 
of oxides on it, etc. And the use of data from the directory 
without taking into account their influence on the result leads 
to significant errors in determining T. Moreover, in many 
cases, the values of the spectral emissivity surfaces are 
unknown even at λ = 0.65 µm. 

Sometimes in the case when the values of the spectral 
emissivity are unknown a priori, a pair of brightness 
temperature measurements at different wavelengths of λ1<λ2 

are used for pyrometric estimation of the surface 
temperature. This method is called the method of double 
spectral ratio or color method. To implement it, that is, 
determining the color pseudo-temperature of TC12, use the 
results of measuring two brightness temperatures TSi under 
the condition ε1 ≈ ε2, and based on them, get the color 
temperature of TC12 using the formula (TС12)

−1 = T−1 – 
(Λ12/C2)·ln(ε1/ε2), where (Λ12)

−1 = (λ1)
−1‒(λ2)

−1, (λ1<λ2) [8]. It 
is established that the color temperature gives a more 
accurate estimate of the true T than the brightness TS. And to 
determine the true surface temperature T in the framework of 

this method, it is necessary to have a ratio between ε1 and ε2 
(in the form ε1 = k·ε2 for A. Magunov [9]). But the analysis 
shows that this is a special and very rare case, since the value 
of k is unknown. 

In 1954, the English scientist E. Payet [10] for the first 
time solved the problem of pyrometric determination of the 
true temperature T of a selective surface without using 
information about the absolute values of its emissivity at all. 
For this, he used the method of trichromatic brightness 
pyrometry. At the same time he had to postulate that the 
expression of the dispersion ε(λ) of the emissivity of the 
surface is linear: ε(λ) = а + bλ. The solution to this problem 
was obtained by determining the three brightness 
temperatures TS1, TS2 and TS3: (ТSі)

−1= Т−1 − (λі/С2)⋅ln(εi) for 
three different wavelengths λ1<λ2<λ3, and in this case it was 
assumed that the intermediate emissivity of the surface ε2 is 
equal to the arithmetic average of two extreme values: ε2 = 
(ε1 + ε3)/2. That is, here the connection between ε1, ε2 and ε3 
was used for the first time, which allowed eliminating ε1, ε2 

and ε3 from the final expression for the true temperature in 
the solution process and getting the equation from only one 
unknown T, and the last is to solve by numerical method. 

The method of “double spectral ratio” is also known (this 
is the second modification of the method of trichromatic 
pyrometry), which is used to determine the true temperature 
T of the selectively radiating surface in the case when the 
logarithm of the surface spectral emitting power ε(λ) linearly 
depends on the wavelength: lnε(λ) = a + bλ [11]. This 
method also first measures three brightness pseudo-
temperatures TSi for three wavelengths λ1, λ2 and λ3, 
respectively, and on this basis write a system of two 
equations for two spectral ratios (each of which is an 
expression for the color pseudo-temperature (TСij)

−1 = T−1 –
(Λij/C2)·ln(εi/εj). Based on the three results of determining the 
TSi, it is possible to calculate the true temperature of the 
surface T by solving a system of two transcendental 
equations [7]. The main disadvantage of this method is that 
since the system of transcendental equations cannot be solved 
in general, the true surface temperature T can only be found 
as a result of a numerical solution of the system. 

3. Formulation of the Problem 

Thus, two methods of spectral pyrometry to determine the 
true temperature of the selective surface in the framework of 
trichromatic pyrometry are already known. The first is a 
combination of three measurements of TS brightness 
temperatures for the case of linear dispersion of surface 
emissivity: ε = а + bλ. In this case, it is assumed that the 
intermediate emissivity of the surface ε2 is equal to the 
arithmetic average of ε1 and ε3: ε2 = (ε1 + ε3)/2, which is used 
as the “coupling equation”. 

The mentioned publication of E. Payet [10] is a very 
important, pioneer result for spectral pyrometry. However, it 
must be admitted that it is not a general solution, but only a 
special case, and one that can be realized only for surfaces 
with a linear nature of the dispersion of its emissivity. 

The second case (D. Svet, 1955), i.e. the double spectral 
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ratio method is a combination of two color methods [11] also 
for the case of linear dispersion, but already for the logarithm 
of the emissivity of the surface from the wavelength: lnε(λ) = 
a + bλ. This result, by the way, is also a special case, not a 
general solution. 

An analysis of both cases shows that in spectral pyrometry, 
the use of “coupling equations” makes it possible to solve a 
system of three equations (representing the results of three 
pyrometric measurements of the brightness temperature at 
three wavelengths (λ1, λ2 and λ3), for both spectral methods: 
and the trichromatic brightness method, and combinations of 
two color methods. The possibility of such a “closure” in the 
process of solving the system of equations unknowns ε1, ε2 

and ε3, while there is only one unknown - the absolute 
temperature T. But it should be noted that, first, so far only 
separate special cases for the dispersion expressions ε = f(λ) 
of the emissivity of the surface, and secondly, the 
determination of the final result in them was possible only by 
numerical solution of the system of equations. 

Therefore, the purpose of this study is to find an analytical 
solution to the problem, by definition, within the framework 
of trichromatic pyrometry, the actual surface temperature in 
an explicit form, and for any given dispersion of the 
emissivity of this surface. 

4. Results of Research 

4.1. Combined Color Pyrometry Method 

July 14, 2003 author of the article filed a patent application 
with Ukrpatent for a new technical solution “Combined 
method of trichromatic color pyrometry”. This invention 
[12], relates to the field of spectral pyrometry and can be 
used in determining the actual temperature T(K) by a color 
pyrometry of a selectively radiating surface with any known 
dispersion pattern ε = f(λ) in the working range of the 
pyrometer, but only under the condition ε2 = (ε1 + ε3)/2. 

In this case, the logarithm of the ratio ε1/ε3 from (TСij)
−1 = 

T−1–(Λij/C2)·ln(εi/εj) can be expressed through the logarithms 
ε1/ε2 and ε2/ε3 as follows: 

ln(ε1/ε3) = ln[(εAR+∆ε/2)/(εAR+∆ε/2)] = 2arth(∆ε/2εAR), (1) 

where ∆ε = ε1 – ε3, ∆ε/2εAR = (ε1 – ε3)/2ε2 = (ε1/ε2 – ε3/ε2)/2. 
As a result of solving the problem, a closed solution is 

obtained for one unknown, but the expression for T was 
obtained in an implicit form: 

T‒1=T‒1
C13‒2(Λ13/C2)·arth⁅(½){exp[(C2/Λ12)(T

−1
C12−T−1)]− 

exp[(C2/Λ23)(T
−1

С23–T−1)]}⁆,                                     (2) 

where ТСij = (Λij)
−1/[(λiTSi)

‒1‒(λjTSj)
‒1], (Λij)

−1= (λi)
−1− (λj)

−1.  
Therefore, the determination of the exact value of T from 

this implicit expression can be carried out by the method of 
successive approximations [13], that is, by setting the value 
of the first approximation Ti=1 and carrying out a series of 
successive approximations (iterations) using formula Ti+1 = 
F(Ti, TC12, TC23, TC13): 

T‒1
i+1=T‒1

C13‒2(Λ13/C2)·arth⁅(½){exp[(C2/Λ12)(T
−1

C12−Ti
−1)]− 

exp[(C2/Λ23)(T
−1

С23–Ti
−1)]}⁆.                                     (3) 

Moreover, iterations are carried out until the value of the 
difference between the results of the last and the penultimate 
approximations is less than the experimental error. The result 
of the last approximation is the desired T value for the actual 
surface temperature. 

4.2. Definitions of Intermediate (Effective) Wavelength λ2 

for Color Pyrometry 

However, in order to obtain all the results given above, it is 
necessary to choose the values of the intermediate 
wavelength λ2 in such a way as to satisfy the equality ε2 = 
(ε1+ε3)/2, using the concept of the “inverse” function λ= 
f−1(ε) for the dispersion of the spectral emissivity in the 
working range of the pyrometer. For a selectively radiating 
surface with a known character of the dependence of the 
spectral emissivity on the wavelength ε = f(λ), preliminarily 
determine the value of the intermediate wavelength λ by the 
formula: λ2 = f−1(ε2) ≡ F(εAR), where λ = f−1(ε) is the inverse 
function given for ε = f(λ), εAR is the arithmetic average of 
the extreme values ε1 and ε3. 

As it turned out, the value of the intermediate wavelength 
depends only on the base wavelengths λ1 and λ3, and does not 
depend on the absolute values of the spectral emissivity ε1, ε2 
and ε3. In cases when the base values for the extreme 
wavelengths of the working range (λ1÷λ3) are selected based 
on the minimum instrumental error (for example, for a color 
pyrometer from a “fading thread”, where λ1 = 0.43 µm, λ3 = 
0.65 µm is historically the first “blue-red” ratio of 
wavelengths λ1 and λ3, which are the borders of the 
“sensitivity window” of the human eye), then the value of λ2 
is completely determined by the dispersion of the spectral 
emissivity ε = f(λ) of the selectively radiating surface. 

In those cases when “transparency windows” in the 
atmosphere air are more important, choose different 
wavelengths λ1 and λ3. 

EXAMPLE 1. 
If the dependence character for the dispersion ε = f(λ) of 

the radiating surface has the linear expression ε = а + bλ, 
then the inverse function for ε = f(λ) has the following form: 
λ = (ε−а)/b. Then λ2 = (ε2−а)/b. Substituting instead of ε2 its 
value from the equation of communication ε2 = (ε1 + ε3)/2, 
we get: 

λ2 = [(ε1 +ε3)/2−а]/b ={[(а + bλ1) + (а + bλ3)]/2 −а}/b =  
(λ1 + λ3)/2.                               (4) 

Thus, if it is known a priori that the dispersion pattern of 
the surface spectral ε = f(λ) in the working range of the 
pyrometer has a linear form: ε = а + bλ, then the brightness 
temperature ТS(λ2) should be measured at an intermediate 
wavelength λ2 (λ1<λ2<λ3), which is equal to the arithmetic 
average of the base wavelengths at the borders of the 
working range: 

λ2= (λ1 + λ3)/2.                             (5) 



38 Konstantin Ludanov:  Analytical Solutions in the Framework of Brightness and Color Spectral Pyrometry Methods 
 

For the case of λ1 = 0.43 µm, λ3 = 0.65 µm, we get λ2 = 
0.540 µm. 

EXAMPLE 2. 
Since the dependence character ε = f(λ) for metals (Drude 

formula) has the form ε = 0.365√ (r/λ), the inverse function 
for ε = f(λ) is as follows: λ = r·(0.365/ε)2. Then λ2 = 
r·(0.365/ε2)

2. Substituting instead of ε2 its value from the 

λ2 = 0.3652·r/[(ε1 + ε3)/2]2 = 4·0.3652·r/[0,365√(r/λ1) 
+0.365√(r/λ3)]

2 = 4/[√(λ1)
‒1 + √(λ3)

‒1]2.                  (6) 

Since it is known a priori that for a metal surface the 
dispersion pattern of the spectral emissivity ε = f(λ) in the 
working range of the pyrometer has the form ε = 0.365√(r/λ), 
the brightness temperature TS(λ2) must be measured at an 
intermediate wavelength λ2 (λ1<λ2<λ3), which is also equal 
to no one "average" from the base wavelengths at the 
equality

1 3ε ε⋅ . This condition can be met mathematically 

rigorously - using the concept of the “inverse” function for 
λ(ε): λ2 = f−1(ε2) = f−1(

1 3ε ε⋅ ) ≡ F(
1 3( ) ( )f fλ λ⋅ ), i.e. for 

dispersion of spectral emissivity in the working range of the 
wave pyrometer λ2 (λ1<λ2<λ3).   

Since it is known a priori that for a metal surface the 
dispersion pattern of the spectral emissivity ε = f(λ) in the 
working range of the pyrometer has the form ε = 0.365√(r/λ), 
the brightness temperature TS(λ2) must be measured at an 
intermediate wavelength λ2 (λ1<λ2<λ3), which is also equal 
to no one "average" from the base wavelengths at the 
boundaries of the working range of the pyrometer: 

√(λ2)
‒1 = [√(λ1)

‒1 + √(λ3)
‒1]/2.                        (7) 

For the case of λ1 = 0.43 µm, λ3 = 0.65 µm, we get λ2 = 
0.523 µm. 

4.3. Combined Brightness Pyrometry Method 

On 28.03.2013 author of the article filed a patent 
application with Ukrpatent for a new technical solution 
“Combined method of trichromatic brightness pyrometry”. 
This invention [14] relates to the field of spectral pyrometry 
and can be used in the pyrometric determination of the actual 
temperature T of a selectively radiating surface with a known 
dispersion pattern, that is, the dependence of spectral 
emissivity on the wavelength: ε = f(λ) in the working range 
of the pyrometer λ∈ (λ1÷λ3). 

The basis of the invention was the task of clarifying and 
expanding the functionality of the known method of 
trichromatic brightness pyrometry proposed by E.Payet. 

The proposal is explained as follows: for the first time, the 
author here uses the expression not arithmetic average, but 
proportional average: ε2 = 1 3ε ε⋅ . If we predict both sides of 

the expression ε2 = 1 3ε ε⋅ , then we obtain the equality lnε2 = 

(lnε1 + lnε3)/2. Substituting into it the values of the spectral 
emissivity, expressed from the brightness temperature 
formula: lnεi = (C2/λi)⋅[T−1− (TSi)

−1], eliminates three 
unknowns at once: ε1, ε2 and ε3. As a result, only one 
unknown remains in the formula - the actual temperature T, 

by describing the expression of which we get the following: 

(C2/λ2)⋅[T−1− (TS2)
−1] = {(C2/λ1)⋅[T−1− (TS1)

−1] + 
(C2/λ3)⋅[T−1− (TS3)

−1]}/2.                               (8) 

Conducting transformations and summing up similar 
terms, we obtain an analytical solution of this equation for 
the actual temperature T in the form of a formula that has a 
very simple form: 

Т = TS2·{1 − ½·λ2·[(λ1)
−1+ (λ3)

−1]}/{1−½·(λ2·TS2)·[(λ1⋅TS1)
−1 

+ (λ3 ⋅TS3)
−1]},                          (9) 

where TS1, TS2 and TS3 are the brightness temperatures (K) of 
of the selectively radiating surface, which are measured at 
wavelengths λ1, λ2 and λ3 in the working range of the 
pyrometer λ∈ (λ1÷λ3). 

4.4. Determining the Intermediate Wavelength λ2 for 

Brightness Pyrometry 

However, in order to obtain all the results presented 
above, it is necessary to choose the values of the intermediate 
wavelength λ2 in such a way as to satisfy the equality ε2 =

1 3ε ε⋅ . This condition can be met mathematically rigorously 

- using the concept of the “inverse” function for λ(ε): λ2 = 
f−1(ε2) = f−1(

1 3ε ε⋅ ) ≡ F(
1 3( ) ( )f fλ λ⋅ ), i.e. for dispersion 

of spectral emissivity in the working range of the wave 
pyrometer λ2 (λ1<λ2<λ3).   

As a result, the value of the intermediate wavelength 
depends only on the base wavelengths λ1 and λ2, as well as 
on the nature of the functional dependence ε = f(λ)and does 
not depend on the absolute values of the spectral emissivity 
ε1,ε2and ε3. If the base values of the extreme wavelengths of 
the range of λ1 and λ3 are chosen based on the minimum of 
the instrumental error. For example, for a color pyrometer 
with a “vanishing filament”, λ1 = 0.43 µm, λ3 = 0.65 µm. 
This is historically the first “blue-red” ratio of the 
wavelengths λ1 and λ3, which are the borders of the 
“sensitivity window” of the human eye. In this case, λ2 is 
completely determined by the nature of the dispersion of the 
spectral emissivity ε = f(λ) for any selective surface. 

In cases where “transparency windows” are more 
important, for example, when absorption of water vapor in 
atmospheric air is very significant, other wavelengths are 
chosen. 

EXAMPLE 1. 
If the dependence character for the dispersion ε = f(λ) of 

the radiating surface is a linear dependence ε = а + bλ, then 
the inverse function for ε = f(λ) has the following form: λ = 
(ε−а)/b. Then λ2 = (ε2−а)/b. Substituting instead of ε2 its 
value ε2 = 1 3ε ε⋅ , we get: 

λ2 = (
1 3ε ε⋅ −а)/b = {√[(а + bλ1)⋅(а + bλ3)] − а}/b = √[(а/b 

+λ1)⋅(а/b +λ3)] −а/b.                      (10) 

Thus, if it is known that the dispersion pattern of the 
spectral emissivity ε = f(λ) the working range of the 
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pyrometer has a linear form ε = а + bλ, then the temperature 
TS(λ2) should be measured at an intermediate wavelength λ2 
(λ1<λ2<λ3), which is determined from the nonlinear 
expression of the base wavelengths at the boundaries of the 
working range of the pyrometer λ1, λ3 and of the 
characteristic wavelength λо = а/b. This expression λ2 

depends only on the nature of the dispersion ε(λ), and does 
not contain the absolute values of the emissivity of the 
surface: 

 λ2 = √[(λо + λ1)⋅(λо + λ3)] −λо.                    (11) 

Since the value of λо can take both positive and negative 
values, it is better to rewrite this formula in this form: 

λ2 = √[(λ1 + λо)⋅(λ3 + λо)] −λо.               (12) 

It should be noted here that in the proposed method it is 
necessary to have a priori not absolute values of spectral 
emissivity: ε1,ε2 and ε3, but only the nature of the dispersion 
of spectral emissivity ε = f(λ), which is given by the ratio 
(а/b) for selective surface in the working range of the 
pyrometer λ∈(λ1÷λ3). 

EXAMPLE 2. 
If the dependence character ε = f(λ) is expressed by the 

formula lnε = а + bλ, then the inverse function for ε = f(λ) is 
expressed as follows λ = (lnε−а)/b. Then λ2= (lnε2−а)/b. 
Substituting instead of ε2 its value of ε2 = √(ε1⋅ε3), we get: λ2 
= [ln√(ε1⋅ε3) −а]/b = [(lnε1 + lnε3)/2 −a]/b. And replacing lnε1 

and lnε3 with their expressions, we get the result: 

λ2 = [{(а + bλ1) + (а + bλ3)}/b−a]/b = [{2a + b(λ1 + λ3)}/ 
2 −a]/b = (λ1 + λ3)/2.                                            (13) 

Thus, if it is known a priori that the dispersion pattern of 
the surface spectral emissivity ε = f(λ)in the working range 
of the pyrometer has the form lnε = а + bλ, then the 
brightness temperature TS(λ2) should be measured at an 
intermediate wavelength λ2 (λ1<λ2<λ3), which is equal to the 
arithmetic average of the base wavelengths at the borders of 
the working range: 

λ2= (λ1 + λ3)/2.                                (14) 

For the case of λ1 = 0.43 µm, λ3 = 0.65 µm, we get λ2 = 
0.540 µm. 

EXAMPLE 3. 
Since the dependence character ε = f(λ)for metals (Drude 

formula) has the form ε = 0.365√(r/λ), the inverse function 
for ε = f(λ) is as follows λ = r·(0.365/ε)2. Then λ2 = 
r·(0.365/ε2)

2. Substituting instead of ε2 its value of ε2 =

1 3ε ε⋅ , we get: 

λ2 = 0,3652·r/(ε1⋅ε3) = 0,3652·r/[0,365√(r/λ1)]·[0,365√(r/λ3)] = 

1 3λ λ⋅ .                                             (15) 

Since it is known a priori that for a metal surface the 
dispersion pattern of the spectral emissivity ε = f(λ) in the 
working range of the pyrometer has the form ε = 0.365√(r/λ), 

the brightness temperature TS(λ2) must be measured at an 
intermediate wavelength λ2 (λ1<λ2<λ3), which is equal to the 
average proportional to the base wavelengths at the 
boundaries of the working range of the pyrometer: 

λ2 = 
1 3λ λ⋅ .                              (16) 

For the case ofλ1 = 0.43 µm, λ3 = 0.65 µm, we get λ2 = 
0.528 µm. 

5. Findings 

The article is based on the analysis of two main methods 
of spectral pyrometry (color and brightness) within the 
framework of the trichromatic method, i.e. on the basis of 
three measurements of the brightness temperature TS, 
analytical expressions for the actual temperature T (K) of the 
surface were obtained for the first time, and explicitly for the 
brightness method. 

The expression “average proportional” ε2 = 
1 3ε ε⋅ was 

used for the first time as the “equation of coupling” for the 
method of brightness pyrometry. And in the method of color 
pyrometry (for a double spectral ratio), the expression 
“arithmetic mean” ε2 = (ε1 + ε3)/2 was used. 

For the first time, to determine the intermediate 
(“effective”) wavelength in the trichromatic method of 
spectral pyrometry, the “inverse function” λ = f‒1(ε) option 
was used to express the dispersion of surface emissivity. 

It turned out that for determining the actual temperature T 
(K) of a selective surface, it is not the values of emissivity ε 
that are important, but only the nature of the dispersion, i.e. 
the type of the function ε = f(λ) (linear, logarithmic, etc.), 
since the use of the “inverse function” option allows for any 
pre-specified dispersion character to obtain an expression for 
λ= f‒1(ε) and determine value λ2. 

The main disadvantage of the spectral methods of 
pyrometric determination of temperatures is the need to have 
a priori the nature of the dispersion ε = f(λ) for a radiating 
selective surface. Therefore, the most promising method of 
pyrometric temperature measurement for cases where the 
nature of the dispersion is unknown is the combined 
approach of the author [15, 16], using a combination of both 
pyrometry methods: spectral and radiation. 
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